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Research Techniques Made Simple: Using
Genome-Wide Association Studies to Understand
Complex Cutaneous Disorders

Lam C. Tsoi1,2,3, Matthew T. Patrick1 and James T. Elder1,4
Complex cutaneous disorders result from the combined effect of many different genes and environmental
factors, with individual genetic variants often having only a modest effect on disease risk. The ability to examine
large numbers of samples is required for correlating genetic variants with diseases/traits. Technological
advances in high-throughput genotyping, along with mapping of the human genome and its associated
inter-individual variation, have allowed genetic variants to be analyzed at high density in large case-control
cohorts for many diseases, including several major skin diseases. These genome-wide association studies
focus on showing differences in the frequencies of variants between case and control groups, rather than
co-transmission of a variant and disease through a family, as is done in linkage studies. In this review, we
provide overall guidance for genome-wide association study analysis and interpreting the results. Additionally,
we discuss challenges and future directions for genome-wide association studies, focusing on translation of
findings to provide biological and clinical implications for dermatology.
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ADVANTAGES AND LIMITATIONS OF
GWAS
Advantages
� GWASs can identify new susceptibility regions
without the need to know which variants may be
relevant in advance (“hypothesis-free”
approach).

� Knowledge obtained from GWASs can be used to
guide other types of experiments.

� GWAS is a well-developed approach with many
tools available for data analysis and interpreta-
tion of results.

� GWAS is suitable for complex polygenic
diseases, with many genes contributing only
modestly to disease risk.

� GWAS has the potential to guide development of
precision (personalized) medicine and health
care, especially when combined with other
biomarkers.

Limitations
� GWAS needs a large sample size to achieve suf-
ficient power (i.e., the multiple testing problem).

� It is often not trivial to identify how variants affect
biology.
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INTRODUCTION
Large-scale efforts, such as the Human Genome Project and
the 1000 Genomes Project (1000 Genomes Project et al.,
2015), have allowed common genetic variations (e.g., ge-
netic differences between individuals in which the rare
variant is present in >5% of individuals) to be mapped across
multiple populations. This has facilitated development of new
techniques to study the genetics and genomics of human
diseases, including statistical tools for correlating genetic
variants with diseases/traits of interest in genome-wide asso-
ciation studies (GWASs). GWASs have significantly advanced
the identification of susceptibility regions (i.e., disease-
associated regions in the human genome) for cutaneous dis-
orders in different populations, including psoriasis (Tsoi et al.,
2017; Yin et al., 2015), atopic dermatitis (Hirota et al., 2012;
Paternoster et al., 2015), alopecia areata (Betz et al., 2015),
acne vulgaris (He et al., 2014; Navarini et al., 2014), vitiligo
(Jin et al., 2016), and lupus (Morris et al., 2016)
(see Supplementary Table S1 online). These discoveries have
led to the uncovering of disease pathways and thus
have potential to facilitate novel drug development, including
the notable example of PCSK9 as a therapeutic target to
reduce low-density lipoprotein (LDL) cholesterol levels in
hypercholesterolemia (Price et al., 2015).

Results from GWASs are also shaping our understanding of
biological effects. Far from the early expectations that GWAS
would uncover “nonsynonymous” disease-associated muta-
tions (i.e., genetic changes that alter protein structure), inter-
pretation of recent GWAS results has led to an appreciation
that disease-associated genetic differences commonly affect
Journal of Investigative Dermatology (2018), Volume 138
the efficiency of regulatory elements in a cell type-specific
manner (Farh et al., 2015), rather than altering proteins.
Coupled with the sheer numbers of variants correlating with
disease (for instance, more than 60 distinct loci in psoriasis
alone [Tsoi et al., 2017]), it becomes apparent why most
variants, when considered individually, have only modest
effect on disease risk. It is important to understand that this
modest risk does not mean that these variants are unimpor-
tant, only that further experiments are needed to (i) identify
which genes are actually affected by these variations and (ii)
understand how the affected genes participate in the disease
process.

This review aims to provide an overview of GWAS and its
associated techniques. Specifically, we illustrate how GWAS
data, methods, and results can be interpreted, and we discuss
the benefits and limitations of GWAS. Although we focus on
genotyping arrays, some topics discussed can also be applied
to genetic data generated from DNA sequencing experiments.

STRATEGIES FOR GWAS
Genotyping
To understand the GWAS strategy, it is important to under-
stand the concept of linkage disequilibrium. Figure 1a shows
that by crossover during meiosis recombination over many
generations, our ancestors’ chromosomes formed small
“chunks” of genetic materials (i.e., haplotypes) in which their
underlying variations have been preserved (Ott, 1999).
GWAS takes advantage of linkage disequilibrium structure to
genotype only one or a few of the correlated variants in the
haplotypes and offers clues about causal disease-associated
variants.

Genotyping is the most commonly used approach to profile
genetic data for GWAS (Bush and Moore, 2012). Genotyping
arrays exploit DNA hybridization and fluorescence technol-
ogies (Figure 1b). To detect a single-nucleotide poly-
morphism, several probes are placed on the array in such a
way that for any given probe, the hybridization efficiency of
one single-nucleotide polymorphism allele is substantially
different from the other allele(s).

Various genotyping arrays have been developed for asso-
ciation studies (Table 1). Traditional GWAS arrays cover the
entire genome and focus on genotyping common variants.
Custom arrays, such as Metabochip or Immunochip (Illumina,
San Diego, CA), provide high density genotyping in
specific regions of interest identified by earlier GWAS studies
(Cortes and Brown, 2011). For example, the exome array
(Exomechip; Illumina) focuses on the approximately 2% of
the genome transcribed and translated into proteins. There is
general agreement that even if most disease-associated
variation relates to gene regulation, finding associations that
influence protein structure is of high importance, even if this
is uncommon (Rivas et al., 2011; Tang et al., 2014). Large-
scale genotyping and sequencing projects (1000 Genomes
Project et al., 2015) have advanced the development of
genotyping platforms and efficient strategies in tagging
common variants in GWAS arrays. These arrays can be used
to study small insertions/deletions in addition to single-
nucleotide polymorphisms. Genetic data from genotyping
arrays can have many different formats, but the file format
used by the PLINK software (a publicly available whole-



Table 1. Commonly used array platforms for GWAS

Figure 1. Basic illustrations for GWAS. (a) Chromosomes are “sliced and diced” by meiosis over thousands of generations, such that only small chunks of the
ancestral chromosomes persist intact in the present-day chromosome (linkage disequilibrium). Each haplotype is represented by a different color, with the
crossing point of the blue and orange haplotypes indicating crossover (i.e., the exchange of haplotypes during meiosis). The square brackets indicate a mutation
from A to G, which occurs within a small chunk of the blue haplotype. (b) Hybridization and fluorescence technologies define genotypes for each marker across
different samples (here represented as dots). The x-axis corresponds to the contrast between the two fluorescent intensities for the two alleles; the y-axis is the
average intensity. Samples with homozygous genotypes are colored in red or blue, and the heterozygous genotype is colored purple. Classification of genotypes
does not work well if the intensities of the samples do not fall in any one of the three clusters (black). (c) GWASs identify genetic signals (i.e., where there is a
statistically-significant difference in allele frequencies) for a particular trait using a statistical model. These markers may lead to a specific phenotype through
changes to proteins or regulatory mechanisms. GWAS, genome-wide association study; SNP, single-nucleotide polymorphism.
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genome data analysis toolset [Purcell et al., 2007], with
PLINK 2.0 being the latest version) is commonly supported.
Properties
GWAS
Array Exome Array Targeted Array

Number of
markers

500,000 to
5,000,000

w200,000
(can add

GWAS content)

Vary (e.g., Immunochip
and Metabochip,

w200,000)
Regions of
interest

Whole
genome

Exome Targeted

Allow
imputation

Yes No, if without
GWAS content

Yes, but well-imputed
markers are limited

Requires prior
knowledge

For tagging Exonic regions Candidate regions

Variants to
study

Common Rare Common/low allele
frequency variants

Abbreviations: GWAS, genome-wide association study.
Association
Single-variant association is performed to associate the
alleles/genotypes of each variant with the trait of interest,
typically through a generalized linear model (Bush and
Moore, 2012). To determine which variants are associated
with the trait, a genome-wide significance threshold (P < 5 �
10e8) is normally used (Fadista et al., 2016). This value was
chosen to account for P-values being significant by random
chance (a frequent problem in multiple testing) by controlling
the family-wise error rate, under the assumption of one
million independent haplotypes (0.05/106 ¼ 5 � 10e8). The
criterion is sufficiently robust for common variants in Euro-
pean populations; however, more stringent criteria might be
needed for less common variants or association studies in
other populations (Fadista et al., 2016). In case/control
studies, odds ratios are often reported as effect sizes for the
associated variants identified. Findings from earlier GWAS
studies tend to have higher odds ratios (Tsoi et al., 2012)
because of the limitations in showing modest signals with a
small sample size, whereas the newer loci revealed by later
association studies (revealed by larger sample size) tend to
have smaller odds ratios.

Quality control
Quality control is a critical data processing procedure for
ensuring robustness of any downstream analysis for genetic
data (Winkler et al., 2014), as with other omics data. In
www.jidonline.org e25
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Table 2. Common procedures in performing genome-
wide association analysis and result interpretation

Step Description

Example
Software
Programs

Quality control Array PLINK
GTOOL

Check genomic build
Sample genotyping rate

Check sex inconsistencies
Marker

Marker genotyping rate
Mapping probe to genome (to
ensure unique mapping)

Remove monomorphic markers
Hardy-Weinberg equilibrium

Genotype clustering Z-call
optiCall

Principal component analysis EIGENSTRAT
LASER

Relationship inference KING
Imputation Phasing MaCH

ShapeIT
Beagle

Imputation Minimac
IMPUTE2
Beagle

HLA imputation SNP2HLA
Association Single variant association/burden

test for rare variants
PLINK-1.9
EPACTS

Meta-analysis METAL
rareMETAL

Annotation Annotate variants ANNOVAR
Pathway analysis Identify enriched functions INRICH

ALIGATOR
MAGENTA
MEAGA

Candidate gene
prioritization

Provide inference for
the best candidate genes

from associated loci

GRAIL
OntoFing
DEPICT

e26
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Table 2, we lay out some typical quality control procedures
(and commonly used software) for genetic studies, and here
we use the quality control metrics used by a genetic study on
psoriasis for illustration (Tsoi et al., 2012). The quality of
genotyped data may be evaluated using different metrics, and
only samples/markers with high quality are considered (e.g.,
only including samples and markers with �95% of genotyp-
ing rate; using Hardy-Weinberg equilibrium, P < 1 � 10e6 as
a cutoff to filter out markers with observed genotype fre-
quencies deviating from expected) (Bush and Moore, 2012).
Most often, raw intensity files are provided, which provide
valuable quantitative information regarding hybridization in-
tensity. Cluster plots (Figure 1b) can be produced from in-
tensity files to validate the genotypes that have been
generated from the genotype calling algorithm. Such plots are
particularly important for rare genetic variants, for which
genotype calling is often not trivial (Goldstein et al., 2012).

False positive results can creep in through dependencies
between related individuals (including cryptic relatedness)
and differences in the underlying genetic structures of the
case and control populations (population stratification).
Under the latter scenario, the difference in allele frequencies
Journal of Investigative Dermatology (2018), Volume 138
will reflect only the systematic ancestry differences between
the two groups (Price et al., 2010). This can be particularly
challenging if either the cases or the control groups are
enriched in outliers for the population being studied and can
be problematic even for studies that use shared controls.
Kinship coefficient (e.g., KING) (Manichaikul et al., 2010) can
be used together with a mixed model (Kang et al., 2010) to
address these issues effectively. Principal component analysis
or multidimensional scaling, dimension reduction techniques
that project genetic data to lower-dimension space, can also
be used to generate covariates for association (Price et al.,
2010) to address population stratification. By performing
principal component analysis/multidimensional scaling
analysis together with different populations (e.g., 1000 Ge-
nomes [1000 Genomes Project Consortium, 2012]), outliers
can be shown by comparing their principal component
analysis/multidimensional scaling coordinates with those
from the population of interest. Although these are promising
approaches for common variants, more advanced techniques
may be needed to control for population stratification in the
context of rare variant analysis (Lee et al., 2014) and targeted/
exome platforms (Wang et al., 2015). Finally, genomic con-
trol (lGC) is a metric of population stratification (Devlin and
Roeder, 1999) that may be applied to evaluate association
results after principal component analysis adjustment or
mixed model correction (Devlin and Roeder, 1999). Under
the null hypothesis that genetic variants are not associated
with the trait of interest and the population stratification is
adequately corrected, the lGC value would be equal to 1.

Genotype imputation
Genotype imputation is a powerful statistical genetic tech-
nique (Marchini and Howie, 2010) that allows combining
multiple cohorts (through meta-analysis) by providing a
common framework to analyze genotypes derived from
different platforms. Meta-analysis can significantly enhance
power to show more subtle signals associated with the traits
of interest. Variants that are not genotyped in a cohort can be
imputed (Das et al., 2016) using reference haplotypes from
panels with high variant density (e.g., 1000 Genomes,
Haplotype Reference Consortium [McCarthy et al., 2016]).
First, the haplotypes of genotyped variants in the cohort are
inferred (i.e., phased), with alleles assigned to either the
maternal or paternal chromosomes (Delaneau et al., 2012).
Then, the haplotype structure and frequencies (as well as the
markers present in both the cohort and reference panel) are
used to impute genotypes for the missing variants. In addition
to single-nucleotide polymorphisms and insertions/deletions,
one can also impute HLA alleles and their amino acid se-
quences for different classical alleles in the major histocom-
patibility complex region (Jia et al., 2013). This is particularly
useful in fine-mapping (i.e., high-resolution mapping for
disease-associated variants) major histocompatibility com-
plex associations for immune-mediated diseases, such as
psoriasis (Okada et al., 2014).

Because a statistical model is used to infer genotypes for the
unobserved markers, they must be represented using a
continuous “dosage” value (Howie et al., 2011). Typically,
this value is set to between 0 and 2, indicating the expected
number of times the alternative allele occurs. So that dosage



MULTIPLE CHOICE QUESTIONS
1. Which of the following is NOT a type of array

used for genotyping?

A. Exomechip

B. Immunochip

C. Metabochip

D. Compuchip

2. What is the typical range of values for imputed
genotypes?

A. 0 to 1

B. 0 to 2

C. e1 to 1

D. 0 to 100

3. Which of the following can be used to address
population stratification?

A. Annotation

B. Genomic control

C. Multiple testing

D. Phasing

4. What P-value threshold is commonly used for
genome-wide significance?

A. 5 � 10e4

B. 5 � 10e6

C. 5 � 10e8

D. 5 � 10e10

5. Which of the following is not a priority for
GWAS research in skin disease?

A. Increased sample size and integration across
ethnicities

B. Inferring the biological function of the
disease loci identified

C. Integrating information from clinical data for
precision medicine

D. Identifying differences in gene expression
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values may be used in regression models (i.e., as part of as-
sociation analysis), genotyped markers are represented in the
same way (with 0 indicating that both copies have the refer-
ence allele, 2 indicating that both copies have the alternate
allele, and 1 being the heterozygous case). By comparing
the allele frequency of the marker in the reference samples
with that inferred from the cohort, imputation quality metrics
measure the accuracy of imputed markers (e.g., r2 for Mini-
Mac [Das et al., 2016], “info score” for IMPUTE2 [Howie
et al., 2011]). Markers with low imputation quality (e.g., r2

< 0.7 [Tsoi et al., 2017]) are removed from the downstream
analysis. Imputation works very well for common variants
(e.g., a recent study used imputation to evaluate more than 6
times the number of genotyped markers and thus identified
five novel disease susceptibility regions for psoriasis
[Tsoi et al., 2015b]) but is not as effective for variants
with low allele frequencies. Large reference haplotypes
(e.g., 1000G via public access [1000 Genomes Project et al.,
2015]) or Haplotype Reference Consortium [HRC] via
Imputation Server [Das et al., 2016]) can help enhance
imputation quality for less common variants.

Applications to interpret association results
The interpretation of GWAS findings is of critical importance
to understand how these genetic signals relate to biological
events (Foulkes et al., 2017). One of the first steps in down-
stream analysis is to perform functional annotations for the
identified markers (Figure 1c). These annotations can be used
to classify the potential role(s) of the implicated variants (e.g.,
coding or noncoding regions) and to identify nearby genes of
interest (Wang et al., 2010). As noted, recent large-scale
GWASs have found that disease-associated genetic variants
(or signals) tend to play regulatory roles. By integrating
information from recent large-scale epigenomics projects,
such as ENCODE (ENCODE Project Consortium, 2012) and
the National Institutes of Health (NIH) Roadmap (Romanoski
et al., 2015), we can provide inference for the chromatin
states and corresponding cell types of the associated regions.

Once markers have been annotated, pathway analysis can
be used to identify biological functions for the genes among
the disease loci. Bioinformatics approaches identify the
pathways/functions that are enriched among the genes in
associated loci (Lee et al., 2012) compared with genes
from the (nonsignificant) background regions. Identifying the
best candidate genes from disease regions can also be
important, especially when designing replication experiments
(e.g., resequencing selected candidate genes or regulatory
sequences). Various approaches (based on text mining
[Raychaudhuri et al., 2009], gene expression [Pers et al.,
2015], or ontology [Tsoi et al., 2009]) have been proposed
to integrate independent information with traits/tissue types of
interest to enhance the prioritization of candidate genes in
each locus. Pathway analysis can also prioritize genes that are
mapped to the enriched functions (Tsoi et al., 2015a), and
network-based approaches capturing gene-gene interactions
can be used to identify gene clusters with significant con-
nectivity (Rossin et al., 2011) or shortest distances (Tsoi et al.,
2015a). Statistical genetics techniques have also been
developed to provide robust estimation of heritability using
GWAS data. For example, genome-wide complex trait
analysis (i.e., GCTA) uses variance component estimation to
estimate the heritability of genetic variants captured by the
genotyping platform (Yang et al., 2011).

CHALLENGES AND FUTURE DIRECTIONS
GWASs have facilitated both the generation and evaluation of
new hypotheses in basic science and clinical research over
the last decade (Claussnitzer et al., 2015; Price et al., 2015;
Turner et al., 2012). Most GWASs have been conducted in
European populations, with relatively less comprehensive
genetic information for other underrepresented populations
(e.g., Arabic, Indian). Although GWASs with increased sam-
ple size and transethnic components are ongoing (Morris
et al., 2016; Paternoster et al., 2015), the current challenges
are to provide biological inference for each of the disease loci
www.jidonline.org e27

http://www.jidonline.org


e28

RESEARCH TECHNIQUES MADE SIMPLE �
identified. Specifically, functional assays need to be in place
to test hypotheses developed from GWAS results, providing in
silico/in vitro experimental evaluations on the biological
effects for the susceptibility loci. In addition, it is important
that follow-up studies involve appropriate cell types, because
disease-associated regulatory events are usually cell type
specific (Farh et al., 2015). Epigenetic and expression data
(ENCODE Project Consortium, 2012; Lonsdale et al., 2013)
can be used to investigate whether disease-associated genetic
variants alter the chromatin accessibility of specific genes and
thereby gene expression. Complex cutaneous disorders are
unique in that the affected tissues are readily available and
relatively easy to obtain, thus making the design and imple-
mentation of downstream analysis more efficient, as illus-
trated in the large-scale transcriptomic studies conducted on
skin tissues (Johnston et al., 2017). There is potential for a
higher rate of ascertainment bias in self-reported or health
record data related to skin conditions for genetic studies, but
methods are being developed to address this potential chal-
lenge (Tsoi et al., 2017).

The vast amount of data and information obtained from
GWAS studies may inform precision/personalized medicine
for patients with cutaneous disorders. The next wave of
GWASs should aim to integrate information from clinical
data by associating genetic data with health records
(i.e., Phenome-wide association studies [PheWAS]) (Denny
et al., 2013), or drug responses (i.e., pharmacogenetics)
(Whirl-Carrillo et al., 2012). The challenge, however, is that
GWAS loci alone cannot yet provide clinically relevant risk
assessment for disease (such as the risk of development of
psoriatic arthritis in a psoriasis patient [Stuart et al., 2015]).
Moving forward, efforts should focus on integrating infor-
mation from GWASs with a variety of other clinical bio-
markers and omics data (i.e., proteomics, metabolomics,
transcriptomics, etc.) to produce useful tests to allow clinical
decision making for individualized health care.
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