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RESEARCH TECHNIQUES MADE SIMPLE
Research Techniques Made Simple: Molecular
Docking in Dermatology - A Foray into In Silico
Drug Discovery

Naiem T. Issa1, Evangelos V. Badiavas1 and Stephan Schürer2
Drug discovery is a complex process with many potential pitfalls. To go to market, a drug must undergo
extensive preclinical optimization followed by clinical trials to establish its efficacy and minimize toxicity and
adverse events. The process can take 10e15 years and command vast research and development resources
costing over $1 billion. The success rates for new drug approvals in the United States are < 15%, and investment
costs often cannot be recouped. With the increasing availability of large public datasets (big data) and
computational capabilities, data science is quickly becoming a key component of the drug discovery pipeline.
One such computational method, large-scale molecular modeling, is critical in the preclinical hit and lead
identification process. Molecular modeling involves the study of the chemical structure of a drug and how it
interacts with a potential disease-relevant target, as well as predicting its ADMET properties. The scope of
molecular modeling is wide and complex. Here we specifically discuss docking, a tool commonly employed for
studying drug-target interactions. Docking allows for the systematic exploration of how a drug interacts at a
protein binding site and allows for the rank-ordering of drug libraries for prioritization in subsequent studies.
This process can be efficiently used to virtually screen libraries containing over millions of compounds.
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Molecular recognition is a critical event in drug-protein in-
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nizes a drug exist, such as the lock and key, induced fit, and
protein binding pocket and interacts with the amino acid
(residue) side chains in the pockeet to form a complex—a
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SUMMARY POINTS
� Computational molecular modeling tools aid in
drug discovery to increase throughput and
accuracy in preclinical lead identification and
optimization

� Docking is the computational modeling of how
drugs can occupy and interact with protein target
binding sites

� Docking aids in narrowing the potential chemical
(drug) space from millions of compounds to tens
or hundreds for efficient biological testing and
validation

� Open source software for molecular modeling
and docking are tools developed in academic
settings freely available for academicians to use
in their investigations
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interactions (Kitchen et al., 2004). These interactions include
hydrogen bonding, van der Waals forces, metal coordination,
hydrophobic forces, pi-pi interactions, and electrostatic in-
teractions. Thermodynamically, this protein-ligand binding
can be quantified by the free energy of binding (DG), which is
the free energy of the protein-ligand complex minus the free
energy of the protein and the ligand in their unbound
states. The greater (more negative) the DG, the greater the
stability of the ensuing complex and the more likely its
formation (Figure 1). DG includes enthalpy and entropy
(DG ¼ DH -TDS) and is directly related to the binding con-
stant (DG ¼ RTlnKd). It is important to recognize that binding
free energy, in addition to non-binding interactions
mentioned above include solvation and desolvation, as well
as the internal energies of the protein and ligand (e.g., owing
to conformational changes upon binding and strain).

Molecular modeling aims to study drug-protein recognition
through the computational calculation of physical forces.
Specifically, molecular docking is a widely used technique to
systematically explore how a drug interacts in a protein
binding site, considering its conformations and orientations,
or poses, and the energetics of the interactions in the protein-
ligand complex to estimate the relative binding affinity (DG)
in a computationally efficient way via a so called scoring
function (Figure 2). In this sense, docking can be used to
predict the potential binding pose of a drug and the most
likely protein residue interactions based on the lowest (esti-
mated relative) DG (Kitchen et al., 2004). Docking scoring
functions typically combine empirical terms (parametrized
based on known binding affinities) and energy calculations
based on the specific types of interactions (e.g., electrostatic,
hydrophobic). Entropic contributions, such as ligand rotatable
bond restriction, may also be approximated depending on the
scoring function used. A docking score can, thus, be
considered an estimated relative DG; it is typically a relative
score useful to rank-order drugs and poses with respect to a
protein target but not an exact globally comparable binding
DG. Accuracy is also dependent on the scoring function used,
as each has been trained from different datasets (Wang et al.,
2016). Nonetheless, a great utility of docking is to priortize a
set of compounds for biological testing from extremely large
drug databases (e.g., over 100 million compounds) against
one or more proteins. As the biological high-throughput
screening of millions of compounds against a target is
generally economically or technically unfeasible, docking
allows investigators to expend resources on testing com-
pounds with the greatest likelihood of interacting with their
target. It is now computationally feasible to dock hundreds of
millions of compounds and to identify novel activity from
only a small number (< 1,000) of the best ranked compounds
(Lyu et al., 2019). In contrast to biological screening, docking,
or computational screening in general, does not require a
physical sample. It is therefore possible to explore a very large
chemical space of up to hundreds of millions of compounds
and then acquire only the most likely active compounds for
biological testing.

In addition, docking can be used for understanding the
specific binding mode of drugs previously determined to bind
a target. This information is highly valuable, as further me-
dicinal chemistry optimizations may be pursued to improve
binding against the target, avoid binding to undesirable off-
targets, and also optimize ADMET.

DOCKING IN ACTION: EXAMPLES OF USE IN DRUG
DISCOVERY
One of the first implementations of docking was by DesJarlais
and Dixon (DesJarlais and Dixon, 1994) for HIV drug dis-
covery. They docked known HIV protease inhibitors into its
binding site and consequently designed a more potent in-
hibitor with an inhibitory constant (Ki) of 48 mM (Chenera
et al., 1993). Zhao et al. utilized docking to discover novel
inhibitors of JAK2, a critical member of the JAK-STAT signal
transduction pathway (Zhao et al., 2015). Using the
AZD1480 inhibitor-bound JAK2 crystal structure as a refer-
ence, they docked 3,010 drug-like molecules into the ATP-
binding pocket and tested the top 10 compounds exhibiting
the best scores in an inhibitory assay. They found the ami-
nopyridine ethyl 1-(5-([3-methoxyphenyl]carbamoyl)-3-
nitropyridin-2-yl)piperidine-4-carboxylate to be the most
potent inhibitor, and subsequent optimization resulted in a
low-micromolar inhibitory profile. Later studies used docking
to screen large compound libraries against their protein of
interest. For example, Mirza et al. used docking to screen 18
million compounds against dengue virus nonstructural pro-
tein 3 (NS3) (Mirza et al., 2016), and five inhibitors were
identified with the ability to reduce virus titers in HUH7 cells
(Mirza et al., 2018).

In the context of dermatology, Mann et al. (Mann et al.,
2018) studied why most inhibitors against tyrosinase, the
rate-limiting enzyme of melanin production, lack clinical ef-
ficacy. Inhibitors have traditionally been identified using
mushroom tyrosinase. The authors screened a 50,000-
compound library against recombinant human tyrosinase
(hTyr) in vitro and found Thiamidol to have strong inhibition
compared with hydroxyquinone and kojic acid but weak
inhibition against mushroom tyrosinase. The docking of
Thiamidol to hTyr revealed that it interacts with hydrophobic
amino acids that are not found in mushroom tyrosinase
www.jidonline.org 2401



Figure 1. Simplified schematic of the protein (P) e ligand (L) binding process. P-L binding or dissociation are governed by the free energy of binding (DGbinding),
also known as binding affinity. Physiologically, binding events occur in an aqueous solvent (e.g., cellular or interstitial fluid). Ligand binding causes water to be
displaced from the protein binding site and from around the ligand, a processes termed desolvation. Thus, energy calculations must consider the solvation
energy, which is the energy needed to move the protein, ligand, or P-L complex from a vacuum to the solvent (termed “solvation”). Ultimately, the DGbinding is
determined by complex interaction energy (DGcomplex) subtracted by the protein and ligand solvation energies (DGbinding ¼ DGcomplex e DGsolvation, receptor e

DGsolvation, ligand).
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(Figure 3), possibly explaining the differential effect. Subse-
quent clinical testing showed the efficacy of Thiamidol in
reducing the appearance of age spots.

Recently, Ghosh et al. (Ghosh et al., 2018) employed
docking to identify a novel treatment for acne. The authors
first designed a library of molecules with a quinolone back-
bone, known to have anti-bacterial properties by binding to
bacterial DNA gyrase, and a nitro-heterocyclic motif, also
known to have anti-bacterial and anti-inflammatory features,
arranged in different spatial orientations. These molecules
were subjected to docking to ascertain their potential to
inhibit DNA gyrase. Prior to docking, they utilized the protein
crystal structure of Staphylococcus aureus, since no crystal
structure of Propionibacterium acnes DNA gyrase exists. The
structure of S. aureus DNA gyrase was used, as it had > 40%
amino acid sequence identity with that of P. acnes. VCD-004
was predicted to bind more optimally to DNA gyrase and
interact with amino acids that are different from those that
clindamycin and nadifloxacin (positive controls) interact with
and become mutated to confer drug resistance in P. acnes.
Therefore, VCD-004 can escape known methods of drug
resistance. In vitro and in vivo testing confirmed the in silico
studies. The discovery of VCD-004 as a novel antibiotic
Journal of Investigative Dermatology (2019), Volume 139
against P. acnes for the treatment of drug-resistant acne
demonstrates how docking and molecular modeling are
implemented in rational drug design.

Drug discovery in dermatology also faces unique chal-
lenges regarding pharmacokinetics. The multiple layers of
skin are a barrier against drug diffusion, and skin cells such as
keratinocytes contain drug-metabolizing enzymes that could
affect bioavailability (van Eijl et al., 2012). Adverse effects
may also be because of metabolic products of the parent
drug. As such, docking can help identify the likely metabo-
lizing enzyme of a drug and predict what metabolite(s) may
form (Sevrioukova and Poulos, 2015). The metabolite(s) can
further be docked to target proteins to predict whether they
will have additional effects beyond that of the parent drug.

A GENERALIZED PROTOCOL FOR USING MOLECULAR
DOCKING
For investigators interested in applying docking to their
studies, we point the reader to the article by Forli et al. (Forli
et al., 2016) for a detailed protocol using the open source
AutoDock platform (Trott and Olson, 2010). We present here
a generalized protocol applicable to investigators of any
skill level (Figure 4). However, this protocol is an



Figure 2. Graphic of general docking
process. A virtual drug molecule
library is first prepared and a model of
the target protein of interest is
obtained. The target and molecule
library are then subjected to a docking
procedure on a physical or virtual
computer workstation. The docking
algorithm places the molecules into
the binding pocket and samples
multiple poses and potential binding
interactions. The stability of binding is
predicted by approximating the free
energy of binding (DG) via a docking
scoring function. The molecules are
then ranked by the docking score/
approximate DG, with more negative
values implying greater interaction
stability and, thus, a greater likelihood
that the predicted binding interaction
will occur.

Figure 3. Structural aspects of hTyr and mTyr, adapted from (Mann et al., 2018). (a) Thiamidol docked into a homology model of hTyr. (b) Schematic view of
interactions between hTyr amino acids and thiamidol stabilizing the protein-ligand complex. Yellow arcs represent hydrophobic interactions, red and green
arrows represent hydrogen bonds, and the blue arrow represents p-p bonding. (c) Comparison of the amino acid sequences of hTyr with the mTyr isoenzymes
PPO3 and PPO4 in the CuB region. Hydrophobic amino acids predicted to interact with thiamidol in hTyr (blue boxes) are not found in mushroom tyrosinase, as
evident by the sequence alignment. hTyr, human tyrosinase; mTyr, mouse tyrosinase; PPO, polyphenol oxidase.
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oversimplification, as each protein target requires nuanced
study of its structure and its druggability (Hussein et al., 2017).
We further provide the reader a table of software resources
typically used for docking protocols (Table 1) with their uses
discussed below.
The investigator first identifies their protein target of inter-
est. The Protein Data Bank (PDB) (Berman et al., 2000) is then
searched to see if that target has been crystallized. If so, a PDB
file of the protein’s three-dimensional structure is then
downloaded. The PDB file is a standardized text file that
www.jidonline.org 2403



Figure 4. Schematic of a generic docking workflow. A detailed protocol can be found in (Forli et al., 2016).
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contains information on the atoms of the protein, where they
are in space (three-dimensional Cartesian coordinates), resi-
dues they are associated with, and how they are connected
(e.g., secondary structure). Sometimes the protein is co-
crystallized with other molecules, such as formaldehyde
solvent or bound ligands. These molecules are also repre-
sented in the PDB file and may need to be removed or
manipulated. Once the PDB file is obtained, the investigator
may study the structure using visualization software such as
VMD (Humphrey et al., 1996). The protein will need to be
Journal of Investigative Dermatology (2019), Volume 139
further prepared by assigning bond orders, treating non-
standard atoms, and assigning the appropriate protonation
states on functional groups (e.g., aspartic acid, arginine, his-
tidine) at physiologic pH. The pH-specific protonation is
critical for the accurate modeling of ligand interactions, as the
electrostatic properties change depending on the pH and thus
lead to different binding properties. This is exemplified by the
different protonation states of histidine within the protein (Kim
et al., 2013). After protonation, the protein needs to undergo
energy minimization to relax the structure given the new



Table 1. Selected Open Source and Commercial Software for Major Molecular Modeling Tasks Related to Docking

Molecular Modeling Task Software/Web Server
Open Source*/
Commercial Website

1. Protein Preparation
Crystal Structure PDB RCSB Open Source https://www.rcsb.org/

PDBe Open Source http://www.ebi.ac.uk/pdbe/
Protein Visualization UCSF Chimera Open Source https://www.cgl.ucsf.edu/chimera/

Avogadro Open Source https://avogadro.cc/
PyMOL Commercial https://pymol.org/2/

Schrodinger Maestro Commercial https://www.schrodinger.com/maestro
VMD Open Source https://www.ks.uiuc.edu/Research/vmd/

Homology Modeling NCBI BLAST Open Source https://blast.ncbi.nlm.nih.gov/Blast.cgi
UCSF Chimera Open Source https://www.cgl.ucsf.edu/chimera/

Modeller Open Source https://salilab.org/modeller/
SWISS-MODEL Open Source https://swissmodel.expasy.org/

I-Tasser Open Source https://zhanglab.ccmb.med.umich.edu/I-TASSER/
Rosetta Open Source https://www.rosettacommons.org/software
Phyre2 Open Source http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?

id¼index
Schrodinger Prime Commercial https://www.schrodinger.com/prime

Assigning Protein Protonation States UCSF Chimera Open Source https://www.cgl.ucsf.edu/chimera/
Schrodinger Commercial https://www.schrodinger.com/

Protein Energy Minimization UCSF Chimera Open Source https://www.cgl.ucsf.edu/chimera/
Schrodinger Protein Preparation

Wizard
Commercial https://www.schrodinger.com/protein-preparation-wizard

NAMD Open Source http://www.ks.uiuc.edu/Research/namd/
2. Ligand Preparation
Drawing Chemical Structures Avogadro Open Source https://avogadro.cc/

Chemdraw Commercial https://www.perkinelmer.com/category/chemdraw
Marvinsketch Commercial https://chemaxon.com/products/marvin

OpenEye Omega Commercial https://www.eyesopen.com/omega
Schrodinger LigPrep Commercial https://www.schrodinger.com/ligprep

Downloading Established Ligand
Databases

DrugBank Open Source https://www.drugbank.ca/

eMolecules Commercial https://reaxys.emolecules.com/index.php
PubChem Open Source https://pubchem.ncbi.nlm.nih.gov/
ZINC Open Source https://zinc15.docking.org/

3. Docking
Binding Site Prediction COACH Open Source https://zhanglab.ccmb.med.umich.edu/COACH/

GHECOM Open Source http://strcomp.protein.osaka-u.ac.jp/ghecom/
Schrodinger Sitemap Commercial https://www.schrodinger.com/sitemap

Surfnet Open Source https://www.ebi.ac.uk/thornton-srv/software/SURFNET/
Docking Protocol Autodock Open Source http://autodock.scripps.edu/

DOCK Open Source http://dock.compbio.ucsf.edu/
GOLD Commercial https://www.ccdc.cam.ac.uk/solutions/csd-discovery/

components/gold/
RosettaLigand Open Source https://rosie.graylab.jhu.edu/ligand_docking

Schrodinger Glide Commercial https://www.schrodinger.com/glide
FlexX Commercial https://www.biosolveit.de/FlexX/
Surflex Open Source http://www.jainlab.org/downloads.html

FRED/HYBRID Commercial https://www.eyesopen.com/oedocking

*w.r.t. academic non-commercial endeavors.
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electrostatic properties and that crystallization causes artifi-
cial packing of the protein to generate crystals.

If a protein target has not yet been crystallized (e.g., not
found in the PDB), then either homology modeling or ab initio
modeling is required. Homology modeling is the process of
predicting a protein’s structure from a related homologous
protein (also called the template) whose structure has already
been determined. Generally, this requires aligning the amino
acid sequence of the target against a large database of known
proteins with established structures, usually by a program
such as NCBI BLAST (Johnson et al., 2008). A rank-order list
of templates based on percent sequence identity is then
retrieved, and those with > 60% identity can be considered
good templates. Sophisticated homology modeling software
tools such as SWISS-MODEL (Waterhouse et al., 2018) or
Modeller (Sali and Blundell, 1993; Webb and Sali, 2016) use
www.jidonline.org 2405
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additional target sequences of related proteins and multiple
templates to predict the best alignment (profile-profile based
alignment) and predict the target structure of the protein
(Table 1). In contrast, ab initio modeling is the process of
predicting the tertiary folded three-dimensional structure of a
protein from just its amino acid sequence. This is known as
the classical “protein folding problem” (Dill et al., 2008) and
is an incredibly difficult task. A detailed discussion of ho-
mology and ab initio modeling is outside the scope of this
article; the reader is encouraged to peruse the following ar-
ticles (Bonneau and Baker, 2001; Hardin et al., 2002).

After target preparation, the ligand(s) must be similarly
prepared. Ligands may be individually drawn (two-dimen-
sional [2D] or three-dimensional [3D] structure) using
chemical drawing software such as Avogadro (Hanwell et al.,
2012). Most commonly, ligands would be downloaded from
a vendor or propriety or publicly available databases such as
ZINC (Sterling and Irwin, 2015) and PubChem (Kim et al.,
2019). Ligand structures (atom types, atom charges, atom
connectivities, and spatial coordinates) are represented in a
multitude of file types (e.g., SMILES, SDF, MAE, MOL2).
While each file type is recognized by different molecular
modeling software, they all essentially represent the same
information for a given ligand. Once the ligands are drawn or
downloaded, 2D structure representations must be converted
to 3D. Undefined chiral centers and geometric configurations
must be enumerated. The proper protonation states must also
be assigned at the appropriate pH, just like the protein target.
In addition, ligand tautomers need to be generated. Tauto-
mers are constitutional isomers of a ligand, which occur
because of the relocation of a proton. As tautomers can
interconvert, it is important to generate feasible tautomers to
achieve reliable results in molecular modeling. Depending on
the docking algorithm, it is sufficient to have one energy-
minimized 3D structure for each ligand representation (pro-
tonation state tautomer, stereoisomer), or an ensemble of
energetically feasible conformers need to be generated for
each representation. Several tools can be used for
ligand preparation, for example LigPrep from Schrodinger
and Omega from OpenEye (Table 1) to generate high-quality
conformer libraries. The reader is referred to Brink and
Exner (Brink and Exner, 2009) for a detailed discussion of
how docking results are affected by ligand representation.

Docking may then be performed once the protein target
and ligands are prepared. The binding site must first be
identified. Various software tools can do this using different
methods. For example, if a reference ligand (e.g., a known
inhibitor) is co-crystallized with the protein target, then the
binding site may be considered as the residues located within
a set distance from the reference. If no reference is known, a
set of residues may be selected to define the pocket. Software,
such as Surfnet and SiteMap, aid in binding site identification.
A grid must then be generated that encompasses the binding
site. The center of the grid may be placed at the centroid of
the reference ligand or the binding site-defining amino acids.
The grid serves as the 3D volume that the docking algorithm
uses to place ligands and explore and score binding in-
teractions. The grid includes all definitions of the protein
binding site parameters to calculate a docking score to
Journal of Investigative Dermatology (2019), Volume 139
estimate relative binding affinity. Once the grid is set, docking
can then be initiated.

Two general docking algorithms that require slightly
different workflows and tools exist: flexible and rigid docking.
Here, flexible and rigid refer to the ligand; the protein in most
algorithms is kept rigid allowing no or only minimal confor-
mational changes. Flexible docking is used to assess changes
in ligand geometry after the binding complex is formed. Thus,
the algorithm explores the conformational space of the ligand
while docking (i.e., keeps the ligand flexible). It therefore
requires only one (energetically favorable) 3D conformation
as input per ligand representation. However, given the large
degrees of freedom due to conformational sampling, the
computational running time is longer than rigid docking. In
rigid docking, the 3D ligand is rotated and translated during
docking, but its 3D conformation is not changed (i.e., the
internal geometry is held rigid). This algorithm therefore re-
quires a pre-generated list of all feasible 3D conformers for
each ligand representation; depending on the ligand, typi-
cally between 20 and 200 conformers with the goal of
obtaining at least one potentially correct conformer. The rigid
docking algorithm is much faster but does not consider the
flexibility of the ligand within the binding pocket, leading to
false-positives and false-negatives. Examples of the best flex-
ible docking tools include Glide (Friesner et al., 2004) from
Schrodinger and FlexX (Rarey et al., 1996) from BioSolveIT,
and the best rigid docking algorithms include FRED and
HYBRID from OpenEye (McGann, 2012). The open source
docking software DOCK from UCSF (Kuntz et al., 1982) in-
cludes algorithms for rigid and flexible docking. Importantly,
both methods ignore protein flexibility in the interest of effi-
ciency, which contributes to decreased accuracy. The
consideration of both ligand and protein flexibility upon
binding is necessary and is incorporated in methods such as
Induced-Fit Docking (Sherman et al., 2004) but at a greater
computational cost.

After docking is completed, a file is returned that contains the
3Dstructure of the docked ligand in thebinding site of the target.
A table of docking scores to estimate relative binding affinity
and, typically, various other energy terms is also provided. The
investigator can rank-order the ligands based on the docking
score and other considerations and inspect their predicted
binding poses and residue interactions. Generally, the more
negative the docking score (which is an estimate of relative
binding DG), the more stable the interaction, and hence the
more likely that binding event will occur (Kitchen et al., 2004).
From this rank-ordered list, usually the top 10e100 ligands
would be obtained for biological testing.

FURTHER CONSIDERATIONS
While docking is widely utilized, it can be a very nuanced
methodology. A priori knowledge of the structural biology of
the target is necessary for setting up docking experiments. The
choice of the initial conformation depends on what the
investigator is trying to accomplish (e.g., discovery of ago-
nists, antagonists, or allosteric modulators). In addition,
numerous docking algorithms exist that differ in the way they
calculate the energetics of the protein-ligand pose and thus
rank the compounds and poses. These methods are called



MULTIPLE CHOICE QUESTIONS
1. Why is docking useful for early stage preclinical

drug discovery?

A. Enriching very large chemical databases so as
to test compounds with greatest likelihood of
interacting with your target

B. Understanding the specific protein-ligand
atomic interactions (i.e., binding mode) to
guide lead optimization for example

C. A & B

D. None of the above

2. What is a major limitation of docking?

A. It can screen only a small set of compounds
against a protein target

B. No one docking software/algorithm can be
used for all protein target systems

C. It is unable to study how a drug interacts with
its target over time

D. B & C

3. Which of the following is NOT required for
docking?

A. Protein structure

B. Ligand Structure

C. Reference structure of protein-ligand
interaction

D. None of the above

4. Docking may be applied for virtual screenings of
molecule libraries of what size?

A. Hundreds

B. Thousands

C. Millions

D. Any size library

5. You have already discovered a potential new
drug for your target. Now you are interested in
predicting the potential off-target effects of your
drug. What is required for the application the
docking for your drug in predicting off-target
effects?

A. Three-dimensional structure of your drug

B. Library of potential human protein target
structures

C. Library of cytrochrome P450 target structures

D. All of the above

Note: See online version of this article for a detailed explanation of
correct answers.
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scoring functions and are developed based on different
methods, and, thus, no universal scoring function exists. For
example, empirical scoring functions are regression-derived
equations trained from series of protein-ligand complexes
with known binding affinities. The training set used limits the
generalized applicability of a particular scoring function.
Docking results are thus impacted by false-positives but still
help to reduce the vast chemical space for biological testing.
A consensus scoring method may be used as a workaround
where multiple scoring functions are used for a docking
protocol, and molecules that are consistently top-ranked
across all scoring functions are then selected for biological
testing (Poli et al., 2016). The reader is directed to (Chen,
2015) for a more nuanced discussion regarding the limita-
tions of docking. In general, docking scores are the most
useful for the relative ranking of docked compounds and
poses in the same or closely related protein and binding site.
Docking scores are not the actual binding affinity or binding
free energy.

Furthermore, the solvent and salt content (e.g., water
and concentration of sodium, chloride, and potassium
ions) are important contributors to the binding DG. Most
docking programs perform simulations within a vacuum
without accounting for physiologic solvent and salt con-
tent. However, the solvent effect is implicitly modeled in
the scoring function. Thus, more accurate solvent models
are typically not used in primary scoring, because of the
high computational cost (hardware and time requirements)
of performing these simulations accurately. Thus, typically
only a few (< 1000) molecules would be chosen after
docking for subsequent refinement under solute and sol-
vent considerations. These post-docking energy calcula-
tions help to increase the true positive rate and are known
as molecular mechanics generalized Born molecular sur-
face area and molecular mechanics generalized
PoissoneBoltzmann surface area methods, which are
reviewed in (Kerrigan, 2013).

It is also important to note, however, that docking only
represents a single “snapshot” of the molecular interaction.
Biological systems are always in flux, and their interactions
change over time. Recent technological advances now allow
for the highly granular study of molecular interactions at the
atomic level including solvent. Specifically, molecular dy-
namics is the study of atomic interactions over time as they
depend on Newtonian mechanics, temperature, and physical
forces. The reader is referred to (Hospital et al., 2015) on the
application of molecular dynamics for drug discovery.

CONCLUDING REMARKS
Drug discovery is a pain-staking process requiring enormous
research and development investment; yet success rates are
low. With increasing amounts of available data (big data) and
huge advances in computational hardware and algorithms,
computational tools are now used throughout the drug dis-
covery pipeline and have the potential to aid in revitalizing
the pharmaceutical pipeline. One such computational
method in the preclinical hit and lead identification stage is
molecular docking, which is now scalable to hundreds of
millions of compounds. As actionable protein targets are
becoming better elucidated in dermatologic conditions,
molecular modeling, such as docking, has great potential to
aid in expediting the process from drug ideation to clinical
use.
www.jidonline.org 2407
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DETAILED ANSWERS

1. Why is docking useful for early stage preclinical drug
discovery?

Answer: C. Molecular docking in drug discovery serves two
major functions. The first is to provide an efficient chemical
screening method (“virtual screening”) of hundreds of thou-
sands to tens or even hundreds of millions of compounds and
narrow them down to a small number of compounds with the
greatest likelihood of interacting with the protein target in
question. This enriched set of compounds can then be pur-
chased from appropriate vendors for biological testing. Thus,
docking optimizes the preclinical drug discovery pipeline to
enrich for compounds that will have the greatest likelihood of
biological success. Second, molecular docking can assist in
determining the molecular interactions of a drug with the
target protein at the atomic level. For example, by docking a
drug into the binding site of its known protein target, the
experimenter can study the interactions the drug makes with
the amino acid side chains of the protein. This information
can be further leveraged to find novel drugs with improved
binding affinity and possibly better side effect profiles by
avoiding binding to undesired off-targets (via docking into
these proteins). This is typically done through medicinal
chemistry efforts where chemical moieties may be added or
changed to enforce or prevent certain interactions. For
example, the addition of a carboxyl group (-COOH) to a drug
may strengthen its binding by contributing an additional
hydrogen bond to an amino acid sidechain, since it becomes
deprotonated into a carboxylate ion (-COO-) if its pKa is
higher than that of physiologic pH, thus increasing the
binding affinity. Alternatively, the addition of bulky groups,
such as a cyclohexyl group, may cause steric hindrance and
decrease the ability of the drug to fit in the binding pocket,
thus decreasing the binding affinity.

2. What is a major limitation of docking?

Answer: D. Various docking software and/or algorithms exist
that employ diverse scoring functions for calculating the free
energy of binding (e.g., forcefield, empirical, knowledge-
based, and target-based scoring functions). As such, there
is no one universal method for employing docking to a given
protein target system. However, one can combine multiple
docking methods in a consensus approach, termed
“consensus docking”, and enrich for drugs that consistently
are ranked highest across the majority of docking methods.
In addition, docking provides a single snapshot in time of a
drug interacting with the binding pocket of the protein
target. Docking is unable to elucidate how the drug will
continue to interact within the pocket over time, or if the
drug will induce large-scale conformational changes in the

protein target. These questions are best answered through
other methods such as molecular dynamics (MD)
simulations.

3. Which of the following is NOT required for docking?

Answer: C. Molecular docking requires a model structure of
the protein target of interest (e.g., crystal structure or homol-
ogy model) and 3D structures of the ligands to be docked.
The protein structure needs to be energy-minimized, and the
protein amino acid side chains should have the appropriate
protonation states based on the pH of the biological system
(e.g., the software should be told to prepare the protein
structure at a physiological pH of 7.4). Similarly, ligands
should be prepared at the appropriate pH, as the protonation
state changes their physicochemical features and thus binding
properties. While it is desirable to have a reference protein
structure with a bound ligand (e.g., inhibitor) as an example
binding site/mode, it is not necessary. The experimenter may
use computer software to identify one or more putative
binding sites to serve for subsequent docking studies.

4. Docking may be applied for virtual screenings of mole-
cule libraries of what size?

Answer: D. Docking is versatile in its use for studying the
potential mechanism of action for a single drug molecule and
for screening molecule libraries that can be as large as hun-
dreds of millions of compounds. The major limitation in
screening large libraries is the computational cost. Many ac-
ademic centers or industry entities have dedicated computa-
tional infrastructures to allow for high-throughput efficient
docking of very large molecule libraries.

5. You have already discovered a potential new drug for
your target. Now you are interested in predicting the
potential off-target effects of your drug. What is required
for the application the docking for your drug in predicting
off-target effects?

Answer: D. Docking is frequently used to predict off-target
effects of a drug, as well as predicting its pharmacokinetics
with respect to drug metabolism. Investigators often perform
an inverse docking procedure where a drug of interest is
docked against a large library of human protein target struc-
tures. Those interactions that score well can lead the inves-
tigator to potentially infer the off-target effects and its
consequence on human biology. In addition, docking against
cytochrome P450 enzyme structures allows the investigator
to predict important interactions that will affect how the drug
is metabolized into other potentially active metabolites. The
investigator may also model these metabolites and predict
their targets using docking.
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