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Research Techniques Made Simple: Using Genetic

Variants for Randomization
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Observational epidemiological studies have identified associations between a number of modifiable exposures
and outcomes, including in dermatology, such as between smoking and psoriasis. However, it is challenging to
determine if such relationships are causal because of the potential of confounding and reverse causation.
Mendelian randomization (MR) is a statistical method that can be used to investigate the causal relationships
between an exposure and outcome by using a genetic instrument that proxies the exposure. The resulting
estimate (under certain assumptions) can be interpreted as the causal estimate, free of confounding and
reverse causation. In this review, we provide an overview of how to undertake an MR analysis, with examples

from the dermatology literature. We also discuss the challenges and future directions of this method.
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Description: This article, designed for dermatologists, resi-
dents, fellows, and related healthcare providers, seeks to
reduce the growing divide between dermatology clinical
practice and the basic science/current research methodologies
on which many diagnostic and therapeutic advances are built.

Objectives: At the conclusion of this activity, learners should

be better able to:

e Recognize the newest techniques in biomedical research.

e Describe how these techniques can be utilized and their
limitations.

e Describe the potential impact of these techniques.
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INTRODUCTION

Observational epidemiological studies have uncovered re-
lationships between disease and various explanatory factors
known as exposures (Table 1). Notable examples in
dermatology include the association of psoriasis with
smoking (Armstrong et al., 2014) and, more recently, the
association of atopic dermatitis with cardiovascular traits
(Standl et al., 2017). However, traditional observational
studies are prone to biases such as confounding, where the
observed association may be due to the exposure being

related to other lifestyle or socioeconomic factors that have
a casual influence on disease. Furthermore, the observed
associations may be due to reverse causation, where dis-
ease is actually influencing the assumed exposure (Lawlor
et al., 2008); for example, having psoriasis could influ-
ence an individual’s propensity to smoke. Mendelian
randomization (MR) presents a method for evaluating cau-
sality in an observational study setting. We aim to provide
an overview of the principle of MR and the statistical
methods used.
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SUMMARY POINTS

o Mendelian randomization (MR) is a statistical
method for investigating causality between
exposure and outcome variables in observational
epidemiology.

e Unlike traditional observational studies, MR uses
genetic variants as instruments (or proxies) for
the exposure, hence avoiding confounding and
reverse causation.

o Application of such methods in the field of
dermatology is a promising area of research.

e Future directions and developments will allow
MR to be a valuable tool for investigating causal
pathways for disease, as well as providing insight
into therapeutic interventions.

THE PRINCIPLE OF MR
MR is a form of instrumental variable analysis whereby ge-
netic variants are used as instruments (or proxies) for an
exposure of interest (Table 1). Because genetic variants are
randomly segregated at conception and cannot be influenced
by confounding factors or the outcome itself, they can be
used to estimate the causal effect of the exposure upon an
outcome (Lawlor et al., 2008) (Figure 1).

Performing MR requires two pieces of information: (i) the
effect of the genetic instrument on the exposure (8y7) and (ii)
the effect of the genetic instrument on the outcome (Byy).
These can then be used to estimate the causal effect of the
exposure on the outcome (causal fByx) with the following ratio
(Wald, 1940): causal By = v

6XZ
For a genetic variant to qualify as an instrumental variable,

three core assumptions must be satisfied: the variants (i) must
be truly associated with the exposure of interest, (ii) must not
be associated with confounders of the exposure-outcome
relationship, and (iii) must affect only the outcome via the
exposure and not through an alternative pathway (Zheng
et al., 2017). The use of genetic variants in an MR frame-
work can be compared with a randomized controlled trial,
where genotypes are used to randomize individuals to
different subgroups (Lawlor et al., 2008). The effect of the
genetic instrument on the outcome (By,) is analogous to an
intention-to-treat  effect from an association between
randomization and an outcome in a randomized controlled
trial (Burgess and Thompson, 2015).

Because MR requires estimates of the associations between
genetic variants and the exposure and genetic variants and
the outcome, the rise of genome-wide association studies
(GWASs) (Tsoi et al., 2018) provides a wealthy resource of
genetic instruments for MR. Published summary GWAS data
can be obtained from various sources such as the GWAS
catalogue (www.ebi.ac.uk/gwas/) and MR-base (www.
mrbase.org) or directly from the authors of the GWAS
(Figure 2). Commonly, independent single-nucleotide poly-
morphisms (SNPs) that have been reported to be associated
with an exposure on a genome-wide significance level
(P-value < 5 x 107?) are used as genetic instruments for the
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Table 1. Glossary

Term Description

A variable that is a common cause of both the
exposure and the outcome.

Confounder

Exposure An explanatory variable used to explain or predict an

outcome variable, such as a trait or disease.
F-statistic Obtained from the regression of a response variable on
a predictor variable, for example, the regression of the
exposure of interest on an instrumental variable (IV).

This can be used as a measure of the strength of
association between an IV and the exposure, thereby
giving an indication of the strength of the instrument.
The further away the F-statistic is from 1, the stronger
the instrument. The F-statistic also depends on the size
of the sample.

GWAS Genome-wide association study. Involves analyzing
genetic variants across the genome, such as single-
nucleotide polymorphisms for association with a

disease or trait of interest.

A variable that is associated with an exposure of
interest but not the outcome. In MR studies, genetic
variants are used as IVs. A valid IV must also be
independent of confounders of the exposure-outcome
association and must affect only the outcome via the
exposure.

Instrumental
variable (IV)

Mendelian
randomization

A method for assessing the causal effect of an exposure
on an outcome by using genetic variants as instruments
or proxies for the exposure variable.

A centralized database of summary GWAS data and an
analytical platform to perform Mendelian
randomization and sensitivity analyses.

MR-base

PheWAS Phenome-wide association study. Involves analyzing
the association between genetic variants and multiple
phenotypic variables (on a phenome-wide scale) rather

than a single phenotype.

Pleiotropy Occurs when a genetic instrument is independently

associated with multiple risk factors for the outcome, in
addition to the exposure of interest. This results in the
third IV assumption being violated, which assumes that
the genetic instrument affects only the outcome via the

exposure.
Where an association is due to the assumed outcome
variable influencing the exposure variable rather than
the exposure influencing the outcome.
Performed to assess the robustness of the main analysis
or the validity of the main results.

Reverse causality

Sensitivity
analysis

exposure (Zheng et al., 2017), but MR analyses can be con-
ducted by using just a single genetic variant or even using all
variants in the genome (appropriately weighted by their effect

Confounders

(©)

Genetic B Exposure Causal B, Outcome
Instrument m— X) Y)
(Z)

By

Figure 1. lllustrative diagram of standard Mendelian randomization (MR)
analysis. A valid genetic instrument (Z) must be truly associated with the
exposure (X), must not be associated with confounders (C), and should have
an effect only on the outcome (Y) via the exposure. Dashed arrows represent
violations of these MR assumptions.
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4 N\
Source GWAS summary data for exposure

and outcome

- GWAS catalogue
- MR Base GWAS database
- “On request” from authors

Define instruments for exposure

Reported SNPs that are most strongly associated with the
exposure (P < 5x108)
N ./

Get instrument effects on outcome

Extract instrument SNPs from outcome GWAS data

Ensure the SNP effect on the exposure and outcome
corresponds to the same allele

{ Harmonise data

Perform Mendelian Randomization

MR Base provides an analytical platform to perform
Mendelian Randomization

Perform sensitivity analysis

For example, to test for pleiotropy

|\ J/

Figure 2. Workflow for performing two-sample MR analysis. Summary
GWAS data provide a wealthy resource of genetic instruments to perform MR.
Various MR methods and sensitivity analyses can be performed with
analytical platforms such as MR-base. Adapted from Hemani et al. (2018).
MR, Mendelian randomization; SNP, single-nucleotide polymorphism.

on the exposure). Published MR studies in dermatology
include those investigating causal relationships between fatty
acids and melanoma (Liyanage et al., 2018), vitamin D levels
and AD risk (Manousaki et al., 2017) as well as skin aging
(Noordam et al., 2017), and, most recently, body mass index
(BMI) and psoriasis risk (Budu-Aggrey et al., 2019), which will
be referred to throughout this review.

MR APPROACHES AND STATISTICAL METHODS

MR study designs

A basic MR study design involves obtaining all information required
from the same set of individuals, meaning that the genetic, exposure,
and outcome data are all available from the same study. This is
known as one-sample MR (Table 2). Large population-based studies
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such as the UK Biobank provide ideal data sets for such analyses to
be carried out. However, it may not always be possible to gather
exposure and outcome measures from the same data set. Two-sam-
ple MR is therefore more commonly adopted, whereby the effect of
genetic variants on the exposure is obtained from one sample, and
the effect of genetic variants on the outcome is obtained from
another (Table 2). This approach has been greatly facilitated by the
increasing availability of summary GWAS data, as well as analytical
platforms to perform two-sample MR, such as MR-base. The steps for
a two-sample MR are shown in Figure 2 (Hemani et al., 2018).

We recently investigated causality between BMI and psoriasis
using both one-sample MR with individual-level data from the UK
Biobank and Nord-Trendelag Health Study (i.e., HUNT) and two-
sample MR with published summary GWAS data. Consistent
results were obtained from both analyses. The combined causal es-
timate suggested a 9% increase in the risk of psoriasis per 1 unit
increase in BMI (Budu-Aggrey et al., 2019) (Figure 3). This finding
supports previous reports of weight loss improving the prognosis of
psoriasis (Maglio et al., 2017) and could suggest weight control as an
intervention to prevent or treat psoriasis.

A bidirectional MR approach can also be adopted that investigates
causal effects in both directions (Table 2). This requires suitable ge-
netic instruments to be available for both traits. Such analysis can
help uncover the direction of causality that explains the observa-
tional association. For example, when considering the relationship
between BMI and psoriasis, we performed bidirectional MR and
found evidence that the observational relationship is largely due to
the causal effect of higher BMI on psoriasis risk rather than a causal
effect of psoriasis influencing BMI (Budu-Aggrey et al., 2019).

MR statistical methods

The simplest method to perform MR involves dividing the effect of
the genetic instrument on the outcome by the effect of the genetic
instrument on the exposure. This is commonly termed the ratio of
coefficients method or the Wald ratio method (as described earlier)
and can be performed with either summarized or individual-level
data (Burgess et al.,, 2017). Two-stage methods can also be
applied, such as two-stage least squares, as used in the BMI and
psoriasis article by Budu-Aggrey et al. (2019) (Table 2). This method
involves regressing the exposure on the genetic instruments and then
regressing the outcome on the genetically predicted values from the
first regression, which allows for the true standard error to be esti-
mated. Additional MR methods have been previously discussed
elsewhere (Burgess et al., 2017).

Combining multiple variants

Where multiple genetic instruments are available for an exposure,
these can be combined into a genetic risk score and used as a single
instrument to perform MR (Zheng et al., 2017). Alternatively, an in-
verse-variance—weighted approach can be applied, whereby the
ratio estimate from each independent genetic variant is combined by
using a fixed-effect meta-analysis model, where each variant is
assumed to provide independent information, and the contribution of
each variant is the inverse of the variance of its effect on the outcome
(Burgess et al., 2013) (Table 2).

Sensitivity methods

One major potential problem with MR occurs when the genetic in-
strument affects the outcome through an alternative pathway that is
distinct from the exposure of interest (termed pleiotropy) (Table 1),
which violates the third assumption (as outlined earlier). Various



Table 2. Methods
Category

and approaches for MR analysis

Description

MR study design
One-sample MR

Two-sample MR

Bidirectional MR

Statistical methods
Wald ratio method

Two-stage least squares
(2SLS) regression

Combining multiple
variants

Inverse-variance

weighted (IVW) estimator

Genetic risk score (GRS)

Sensitivity analysis
MR-Egger regression

Weighted-median
estimator

Mode-based estimator

Latent causal variable
analysis

Performed with genetic instruments, exposure
and outcome data that have been measured in
the same sample population.

The effect of the genetic instruments on the
exposure and the effect of the genetic
instruments on the outcome are obtained from
a non-overlapping sample populations.
The causal relationship between two traits is
investigated in both directions. This approach
can be applied to one-sample or two-sample
MR

Performed with a single genetic instrument (or
genetic risk score) by dividing the coefficient of
the outcome-instrument association by the
coefficient of the exposure-instrument
association.

Involves two regression stages where the
exposure is regressed on the genetic
instruments. The outcome is then regressed on
the genetically predicted exposure values from
the first-stage regression.

Combination of ratio estimates from individual
variants in a fixed-effect meta-analysis. The
contribution of each instrument is the inverse
of the variance of its effect on the outcome.

Multiple genetic instruments for an exposure
are combined into a genetic risk score. This
can then be used as a single instrument to
perform MR.

Sensitivity analysis to perform MR with
multiple instruments. This can be used to
detect pleiotropy and provide a causal estimate
that is robust to pleiotropy.

Sensitivity analysis to perform MR with
multiple instruments. Will provide consistent
causal estimates when at least 50% of the
information in the analysis comes from valid
genetic instruments.

An MR sensitivity analysis that will provide a
robust causal estimate in the presence of
pleiotropy, if the most common pleiotropy
value is zero across the genetic instruments.
Distinguishes between genetic correlation and
causation by mediating the genetic correlation
between two traits with a latent causal variable
that itself has a causal effect on each trait.

Abbreviation: Mendelian randomization.

Analysis

N (Cases/Controls) Estimate (95% Cl)

One-sample MR (individual-level data)

UK Biobank:
HUNT:
Meta-analysis:
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sensitivity methods have been developed to detect and address
pleiotropy, including MR-Egger regression, weighted-median anal-
ysis, the mode-based estimate, and the latent causal variable method
(Table 2). These methods have different assumptions, but they aim to
estimate the true causal effect in the presence of modest levels of
pleiotropy (O’Connor and Price, 2018; Zheng et al., 2017).

Challenges and limitations of MR studies

Although MR has proven to be a useful tool for estimating causality,
there are instances where MR may be limited or the instrumental
variable assumptions may be violated. In some cases, there may be
only weak genetic instruments available for the exposure of inter-
est. Genetic instruments that explain very little of the variance in
exposure can result in weak instrument bias, where the causal es-
timates can be biased toward the null in a two-sample MR setting
and toward the observational estimate in a one-sample MR setting
(Zheng et al., 2017). This highlights the need for GWASs to uncover
associated variants and strong, reliable instruments to perform MR.
The F-statistic from the regression of the exposure on the genetic
instrument indicates the strength of the instrument (Table 1). It is
recommended that genetic variants with an F-statistic greater than
10 be used (Burgess et al., 2013; Lawlor et al., 2008). Because the
F-statistic is dependent on sample size, weak instrument bias can
also be addressed by using larger sample sizes (Burgess and
Thompson, 2015). Additionally, combining individual variants
into a genetic risk score increases the instrument strength. The in-
strument for BMI in our psoriasis analysis had an F-statistic of
7,091, indicating a strong instrument for BMI (Budu-Aggrey et al.,
2019).

Although it is assumed that a genetic instrument is independent of
confounders, this cannot be tested for all potential confounders.
However, it is sensible to test for association between the genetic
instrument and any available measured potential confounders.

Applications and future directions for MR

MR is commonly performed to investigate the causality of established
observational associations. However, a “hypothesis-free” approach
can also be adopted to uncover novel causal relationships. This in-
volves performing MR on a phenome-wide scale, known as MR-
pheWAS, where the effect of a single exposure on multiple outcomes
is evaluated. This has been shown by Haycock et al. (2017), who
found that telomere length increased the risk of several cancers and
reduced the risk of nonneoplastic diseases.

MR can also be applied to investigate the causal role of molecular
traits, such as gene expression, methylation, and protein biomarkers,
on disease. In doing so, genetic variants associated with expression
(expression quantitative trait loci), methylation (methylation

Figure 3. One-sample and two-
sample MR estimates give evidence of
increased psoriasis risk with 1 unit

5,676/ 372,598 1.08 (1.04 to 1.13)
1,076 /17,145 1.07 (0.98 to 1.17)
6,752/ 389,743 1.08 (1.04t0 1.12)

Two-sample MR (GWAS summary data)

Tsoi et al/ Locke et al:

Meta-analysis

One-sample/ two-sample MR:

21,399 / 95,464 1.10 (1.05t0 1.16)

28,151/485,207 1.09 (1.06 to 1.12)

L increase in BMI (kg/mz). One sample
MR has been performed with
individual- level data. Two-sample

= MR has been performed with summary
GWAS data. Adapted from Budu-
— Aggrey et al. (2019). BMI, body mass;

T
075

T T T T
0.80 085 0.90 095

Qdds of psoriasis per 1 kg/m?increase in BMI

T
1.00

T T T T 1
108 110 115 1.20 125

Cl, confidence interval; HUNT, Nord-
Trondelag Health Study; GWAS,
genome-wide association study; MR,
Mendelian randomization.
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MULTIPLE CHOICE QUESTIONS

1. Which of the following is a limitation of
observational studies that can be addressed with
MR?

A. Publication bias

B. Selection bias

C. Confounding

D. Inadequate sample size

2. Which of the following is NOT an assumption
for a valid MR instrument?

A. The instrument must be truly associated with
the exposure and the outcome.

B. The instrument must be truly associated with
the exposure.

C. The instrument must not be associated with
confounders of the exposure-outcome
relationship.

D. The instrument must affect only the outcome
via the exposure.
3. Which of the following can be used to uncover
the direction of a causal relationship?
A. Two-sample MR
B. Observational analysis
C. One-sample MR
D. Bidirectional MR
4. Which of the following can be used to address
pleiotropy in MR?
A. Wald ratio method
B. MR-Egger regression
C. Inverse-variance weighted estimator
D. Two-stage least squares

5. Which of the following statements is FALSE?

A. MR can be performed in a hypothesis-free
manner.

B. MR estimates represent the effect of
long-term exposures.

C. Pleiotropic genetic instruments cannot be
included in MR analyses.

D. MR can be used to investigate the causal role
of molecular phenotypes.

quantitative trait loci), or plasma protein levels (protein quantitative
trait loci) are used as genetic instruments for the exposure and can
provide insight into the causal pathways that underlie disease. This
has been shown for AD, where MR analysis with protein quantitative
trait loci gave evidence that ILTRL2 and ILT8R1 are causal proteins
for AD risk (Sun et al., 2018).

Many MR studies are performed in cohorts with limited ethnic
variation. As shown by Ogawa et al. (2018), transethnic MR studies
can make the causal estimate more robust to confounding by

Journal of Investigative Dermatology (2019), Volume 139

population stratification and more generalizable to broader ethnic
backgrounds (Ogawa et al., 2018).

We also expect that MR methods will begin to be applied to
outcomes of disease progression (as opposed to onset), to enable
them to be more informative for the treatment of patients (Paternoster
et al., 2017). Such studies have begun to emerge in other disease
areas, such as Parkinson disease (Simon et al., 2014), and could
potentially uncover novel therapeutic targets or drug repurposing
opportunities in dermatology.

CONCLUSION

MR has proven to be a robust statistical method to infer causal
relationships in observational studies. In this review, we have
presented strategies for performing MR, as well as the limi-
tations and promising extensions of this method. As large
GWAS summary statistics and open-access data sets become
increasingly available and additional methods continue to be
developed, the potential for MR analysis to produce further
evidence of causality for dermatological traits will increase.
This, in turn, will aid in the understanding of underlying
mechanisms of disease and inform disease prevention and
treatment.
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DETAILED ANSWERS

1. Which of the following are limitations of observational
studies that can be addressed with MR?

Correct answer: C. Confounding

Traditional observational studies are limited by confounding,
reverse causation, and measurement error. MR can be used to
evaluate causality in observational studies while avoiding
these limitations.

2. Which of the following is NOT an assumption for a valid
MR instrument?

Correct answer: A. The instrument must be truly associated
with the exposure and the outcome.

A valid MR instrument must satisfy three core assumptions.
The instrument must be truly associated with the exposure,
must not be associated with confounders of the exposure-
outcome relationship, and must affect only the outcome via
the exposure and not through an alternative pathway.

3. Which of the following can be used to uncover the di-
rection of a causal relationship?

Correct answer: D. Bidirectional MR

Bidirectional MR involves investigating the causal effect of an
exposure on an outcome, as well as evaluating the effect in
the reverse direction of the outcome on the exposure. In
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doing so, the direction of the causal relationship can be
determined.

4. Which of the following can be used to address pleiotropy
in MR?

Correct answer: B. MR-Egger regression

MR-Egger regression can be performed to detect the presence
of pleiotropy and also to obtain a causal estimate that is
robust to pleiotropy.

5. Which of the following statements is FALSE?

Correct answer: C. Pleiotropic genetic instruments cannot
be included in MR analyses.

MR can be performed on a phenome-wide scale to investi-
gate the causal effect of a single exposure on multiple out-
comes with MR-pheWAS. MR estimates also represent the
effect of long-term exposures rather than short-term in-
terventions. In addition, MR can be extended to investigate
the causal effect of molecular traits on disease, where
expression quantitative trait loci, methylation quantitative
trait loci, or protein quantitative trait loci are used as genetic
instruments. Genetic instruments that are pleiotropic are not
valid for MR analysis; however, MR methods have been
developed to address pleiotropy which allows for both
unpleiotropic and pleiotropic variants to be included. These
include MR-Egger regression, weighted-median analysis, and
the mode-based estimate.



